Reg No

Marks

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

First Semester B Lech Degree Laamination December 2021 (2019 scheme)

Course Code: MAT101

Course Name: LINEAR ALGEBRA AND CALCULUS

(2019 -Scheme)

Duration: 3 Hours Max. Marks, 100

PART A

Answer all questions, each carries 3 marks Find the rank of the matrix $\begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & -4 \\ 0 & 4 & 0 \end{bmatrix}$ (3)

Find the Eigen values of the matrix $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$. What are the Eigen values (3) of A2, A-1 without using its characteristic equation

(3) If $z = \frac{xy}{x^2 + y^2}$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

Show that the equation $u(x,t) = \sin(x-ct)$, satisfies wave equation (3) 4 $\frac{\partial^2 u}{\partial x^2} = c^2 \frac{\partial^2 u}{\partial x^2}$

Evaluate $\int_0^3 \int_0^2 \int_0^1 xyz \, dx \, dy \, dz$. (3)5

Find the mass of the lamina with density $\delta(x, y) = x + 2y$ is bounded by the (3)x -axis, the line x = 1 and the curve $y^2 = x$.

number represented by the repeating decimal (3) rational 7 Find the 5.373737

Examine the convergence of $\sum_{k=1}^{\infty} \frac{k^2}{2k^2+2}$ (3)

Find the Taylor series expansion of $f(x) = \sin \pi x$ about $x = \frac{1}{2}$ (3)

If f(x) is a periodic function with period 2π defined in $[-\pi, \pi]$. Write the (3)10 Euler's formulas a_0, a_n, b_n for f(x).

PART B

Anxwer one full question from each module, each question carries 14 marks.

MODULE 1

11 a Solve the following linear system of equations using Gauss elimination method x + 2y - x = 3 (7)

$$x + 2y - 2 = 3$$

 $3x - y + 2z = 1$
 $2x - 2y + 3z = 2$

- Find the eigenvalues and eigenvectors of $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ (7)
- Solve the following linear system of equations using Gauss elimination method. (7) 2x 2y + 4z = 0 -3x + 3y 6z + 5w = 15 x y + 2z = 0
 - Find the matrix of transformation that diagonalize the matrix $A = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$. (7) Also write the diagonal matrix.

MODULE 2

- 13 a The length and width of a rectangle are measured with errors of at most 3% and 4% respectively. Use differentials to approximate the maximum percentage error in the calculated area.
 - Find the local linear approximation L of f(x, y, z) = xyz at the point P(1,2,3). (7) Compute the error in approximation f by L at the point Q(1.001, 2.002, 3.003).
- 14 a If w = f(P, Q, R) where P = x y, Q = y z, R = z x prove that $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} = 0$. (7)
 - b Locate all relative extrema and saddle points of $f(x, y) = 4xy x^4 y^4$ (7)

MODULE 3

- 15 a Find the area bounded by the parabolas $y^2 = 4x$ and $x^2 = \frac{y}{2}$. (7)
 - Evaluate $\int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} e^{-(x^2+y^2)} dx dy$ using polar coordinates. (7)
- 16 a Evaluate $\int_0^1 \int_y^1 \frac{x}{x^2 + y^2} dx dy$ by reversing the order of integration. (7)

Use triple integral to find the volume of the solid within the cylinder $x^2 + y^2 = -(7)$ 9 and between the planes z = 1 and x + z = 5.

MODULE 4

Test the convergence of (i)
$$\sum_{k=1}^{\infty} \frac{3k^3 - 2k^2 + 4}{k^7 - k^3 + 2}$$
 (ii) $\sum_{k=1}^{\infty} \frac{k^k}{k!}$ (7)

- b Test whether the series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{\sqrt{k+1}}$ is absolutely convergent or conditionally convergent
- 18 a Test the convergence of the series $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \cdots$ (7)
 - Test the convergence of (i) $\sum_{k=1}^{\infty} \left(\frac{k}{k+1}\right)^{k^2}$ (ii) $\sum_{k=1}^{\infty} \frac{7^k}{k!}$ (7)

MODULE 5

- 19 a Find the Fourier series expansion of $f(x) = x x^2$ in the range (-1, 1). (7)
 - b Obtain the half range Fourier cosine series of $f(x) = e^{-x}$ in 0 < x < 2 (7)
- 20 a Find the Fourier series expansion of $f(x) = x^2$ in the interval $-\pi < x < \pi$. (7) Hence show that $1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$
 - Obtain the half range Fourier sine series of $f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi x, & \frac{\pi}{2} < x < \pi \end{cases}$ (7)

....